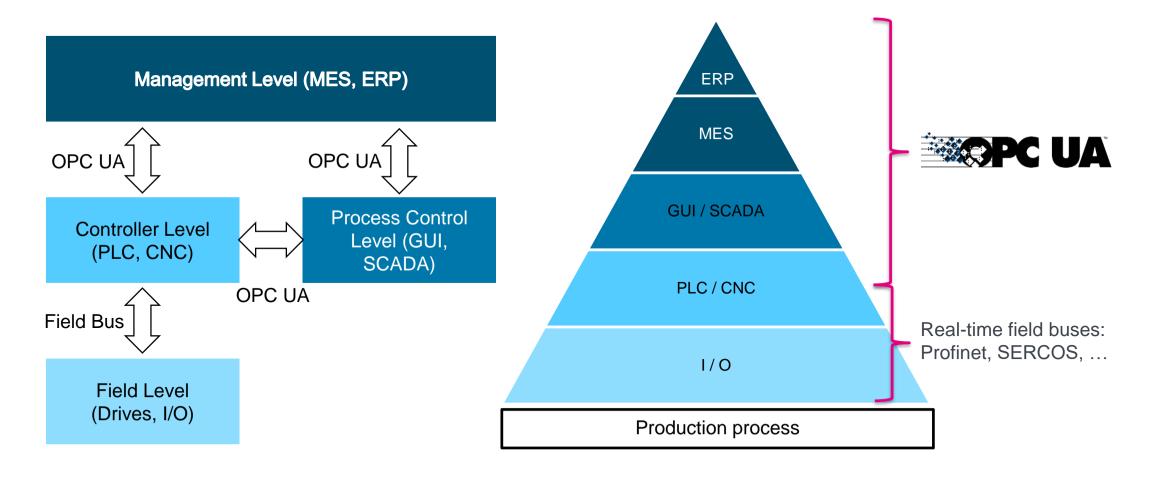


Under the hood

A look into technical details of umati

New Technologies Forum Sep. 20th, 2019 Caren Dripke, M.Sc. ISW University of Stuttgart

Eine Initiative des
An Initiative by



OPC UA basics for umati

System architectures in Industry 4.0

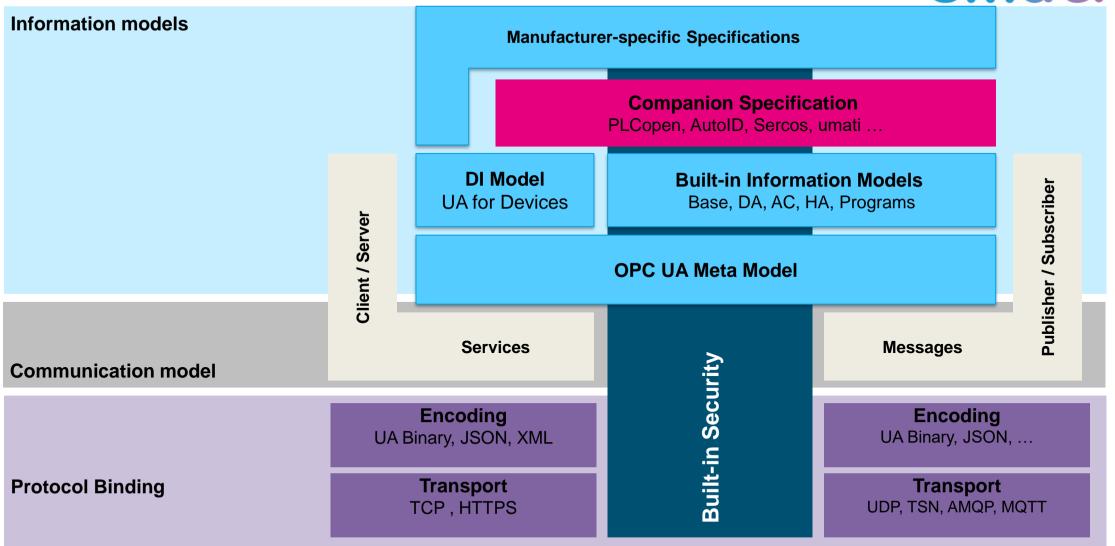
Today's position on OPC UA in the VDMA organizational units

- » Agricultural Machinery
- » Air Conditioning and Ventilation
- » Air Pollution Control
- » Air-handling Technology
- » Building Control and Management
- » Cleaning Systems
- Compressors, Compressed Air and Vacuum Technology
- Construction Equipment and Building Material Machines
- » Drying Technology
- » Electrical Automation
- » Electronics, Micro and Nano Technologies
- Engine Systems for Power and Heat Generation
- » Engines and Systems

- » Fire Fighting Equipment
- » Fluid Power
- Food Processing Machinery and Packaging Machinery
- Foundry Machinery
- » Gas Welding
- » Glass Industry
- » Hydro Power
- Integrated Assembly Solutions
- » Large Industrial Plant Manufacturing
- » Lifts and Escalators
- » Machine Tools and Manufacturing Systems
- » Machine Vision
- » Materials Handling and Intralogistics
- Measuring and Testing Technology

- » Micro Technologies
- » Mining
- » Plastics and Rubber Machinery
- » Power Systems
- » Power Transmission Engineering
- » Precision Tools
- » Printing and Paper Technology
- » Process Plant and Equipment
- » Productronic
- » Pumps + Systems
- » Refrigeration and Heat Pump Technology
- » Robotics
- » Security Systems
- » Software and Digitization

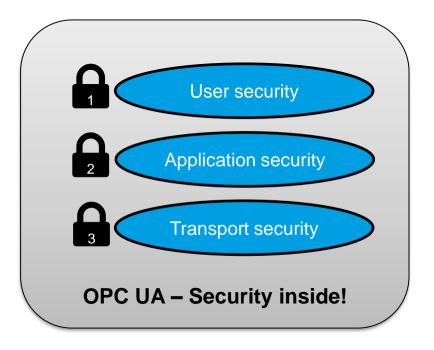
- Surface Treatment Technology
- » Textile Care, Fabric and Leather Technology
- » Textile Machinery
- Thermal Process Industry
- Thermal Turbines and Power Plants
- » Valves
- » Waste Treatment and Recycling
- » Wind Energy
- Woodworking Machinery


OPC UA CS Release (Candidate)

OPC UA CS under development

Awareness existent

Overview of OPC UA



OPC UA protocol security and encryption

- Security and encryption are integral elements of OPC UA ("security by design")
 - User security
 - Application security
 - Transport security
- The extension level of the stack, as well as your own implementation ("make it secure by default") determine the use of existent security and encryption concepts

OPC UA information model

O Data

e.g.

Strings of characters

O Context

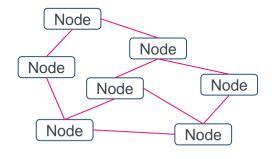
e.g.

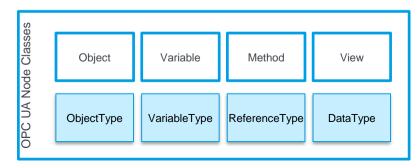
File format, storage location

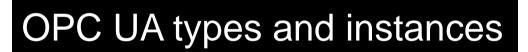
Information e.g.

image, sound, packet, text file

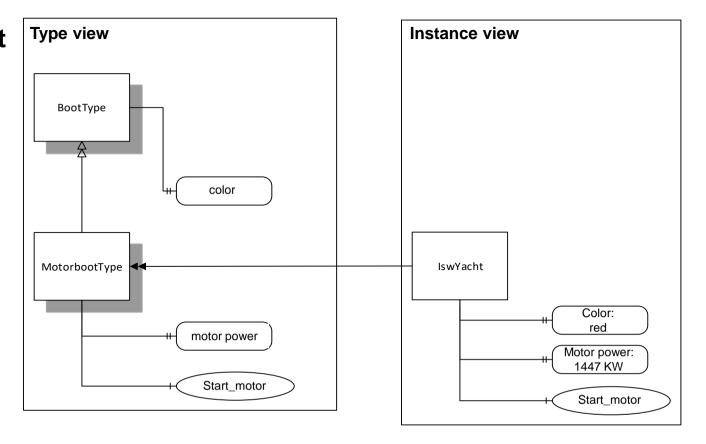
00110000 00110111 00110001 00110001 00111000 00110010 00110111 00110001 00110001 00110001 00110010 00110010 00110101 00110100

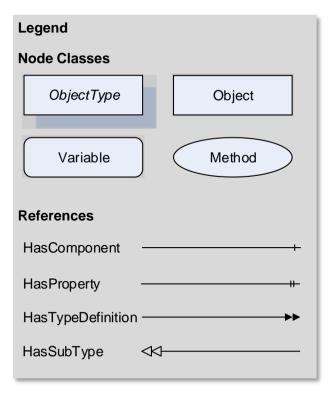



umati

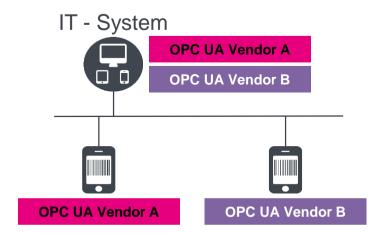

OPC UA Nodes and Datatypes

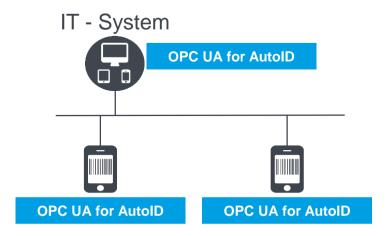
- OPC UA defines a network of nodes
- Nodes are interconnected by references
 - hierarchical references
 - > non-hierarchical references
- 8 types of nodes
 - Object structures information
 - Variable contains information
 - Method offers a functionality
 - View groups nodes for easier access
 - ObjectType, VariableType prototype of the respective element, the type-system enhances reuse of specific kinds of node
 - ReferenceType defines the reference type
 - DataType defines the data type


Node Classes



ISW Yacht




Why are Companion Specifications necessary?

- ... WITHOUT Companion Spec.
- Each device has own model
- Adaption necessary for each device

- ... WITH Companion Spec.
- Each device has same base model
- Adaption costs minimized

Structure of a Companion Specification

OPC UA Introduction	OPC UA in Context	Information model	Profiles/ Namespaces
figures	the specification's topic	 Type view and example instance view Description of the ObjectTypes Explanations for each ObjectType ObjectType definition (Table) 	 Description of system architecture and namespaces Description of profiles

Scope of the umati information model

umati umati

Umati content scope

- Overall top level parameter clusters for OPC UA Companion Specification were iterated (May 2018)
 - Machine information
 - Machine status / operational status
 - Counters (working hours, workpieces, ...)
 - Job information
 - Energy information
 - > Tools
 - Workpieces
 - Storage systems (tools, workpieces, pallets, ...)

umati Companion Specification

Umati design procedure

Core working group preparation phase Parameters Information Model

Identification of desired purposes of umati

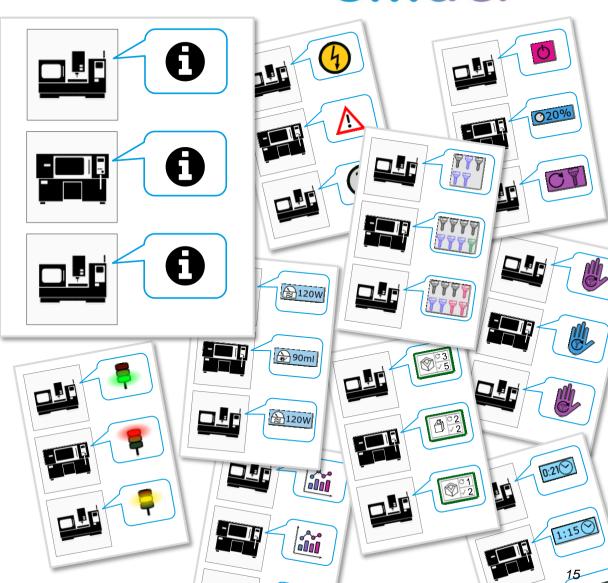
Use Cases

 The definition focus on use cases which need information from the machine

- Results of the phase:
 - 10 core use cases

Process:

- Definition of roles in the factory
- Finding typical activity of the roles in the factory
- Identifying possible shop floor display options
- O Core Question: Who does what on which system?
- O 27 Use Cases


Filter

10 core use cases

umati Use Cases

- 1 Identify machines of different manufacturers
- 2 Overview if production is running
- 3 Overview of parts in a job
- 4 Overview of runtimes for a job
- 5 Overview of machine tool state
- 6 Overview of upcoming manual activities
- 7 Overview of errors and warnings
- 8 Providing information for KPI calculations
- 9 Providing data for media and energy usage statistics
- 10) Providing an overview of tool data

umati Companion Specification

Umati design procedure

Core	working group preparation phase
Use Cases	Parameters Information Model
 Identification of desired purposes of umati The definition focus on use cases which need information from the machine 	 Identification of parameters needed to serve the particular use case. Technology- and vendor specifics in the parameters Only explicit definable parameters are used Process: Defining the parameters for every use case itself Describing the behavior of the parameters No OPC UA specifics in this phase
Results of the phase:10 core use cases	Results of the phase:100 parameters

umati Companion Specification

Umati design procedure

Core working group preparation phase

Use Cases

Parameters

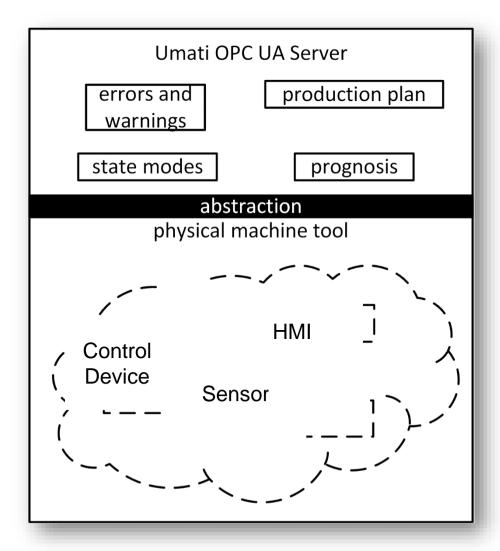
Information Model

- Identification of desired purposes of umati
- The definition focus on use cases which need information from the machine

- Results of the phase:
 - 10 core use cases

- Identification of parameters needed to serve the particular use case.
- Technology- and vendor specifics in the parameters
- Only explicit definable parameters are used
- Results of the phase:
 - 100 parameters

- Information modelling based on the OPC UA modelling principles and rules
- Expressing information through OPC UA methods
- Object and type definitions for umati
- Result of the phase:
- 1 information model


Process:

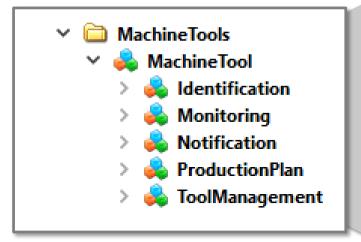
- Defining core object types, variable types and needed data types
- Forming objects for umati
- Building a whole address space for umati

Structural and functional decisions in the Information Model

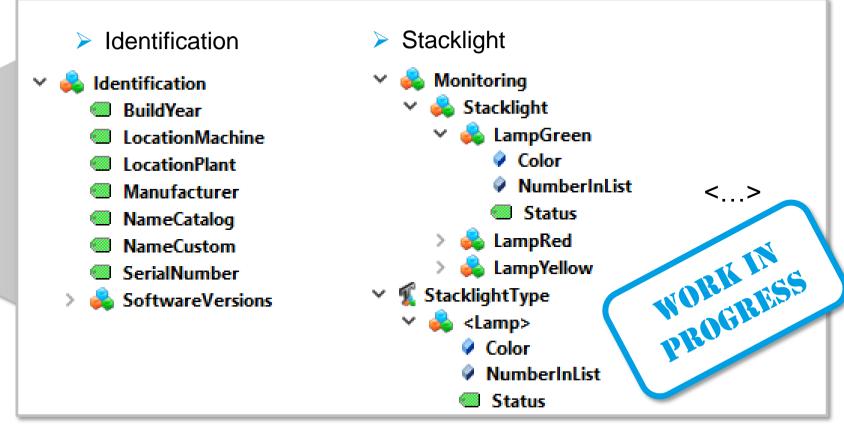
- Function based approach: Grouping the information by functions, instead of (physical) components
 - e.g. errors and warnings are provided at one place, not per machine tool component
 - e.g. jobs are not organized per controller
- Read only data (in version 1)
- Datatype usage limited to
 - Objects
 - Data
 - Variables
 - Events

umati Companion Specification

Umati design procedure

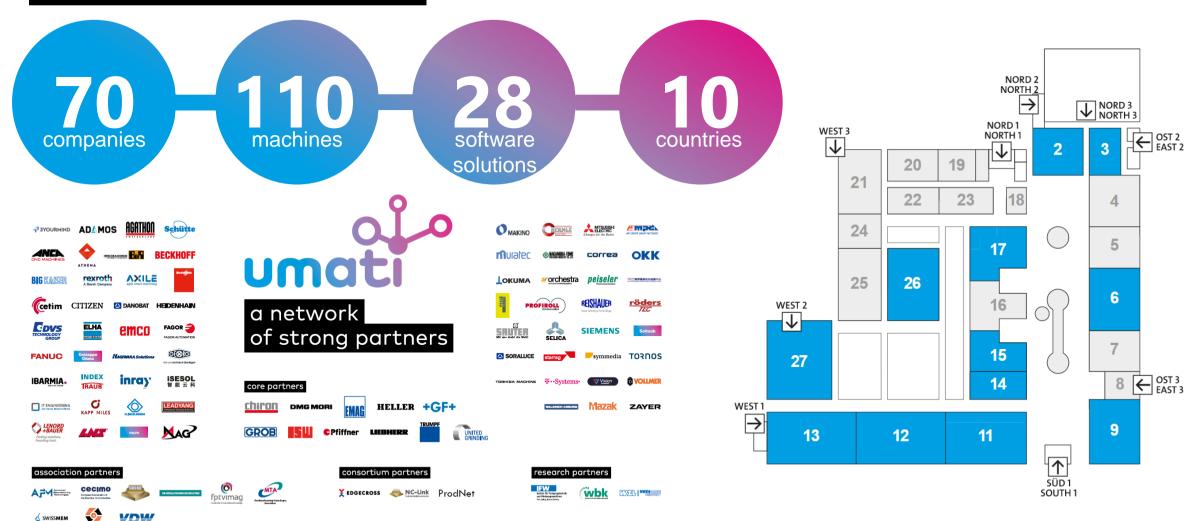

Core working group preparation phase) Jo	int working group
Use Cases	Parameters	Information Model		JWG phases
 Identification of desired purposes of umati The definition focus on use cases which need information from the machine 	 Identification of parameters needed to serve the particular use case. Technology- and vendor specifics in the parameters Only explicit definable parameters are used 	 Information modelling based on the OPC UA modelling principles and rules Expressing information through OPC UA methods Object and type definitions for umati 	toge mer Fou O Doo info acc	ndardization process ether with other mbers of the OPC indation cumentation of the rmation model ording the OPC indation requirements
Results of the phase:10 core use cases	Results of the phase:100 parameters	Result of the phase:draft information model		sults of the phase: nal information model

Work after umati V1: incrementally incorporate more use cases into further versions of the umati interface

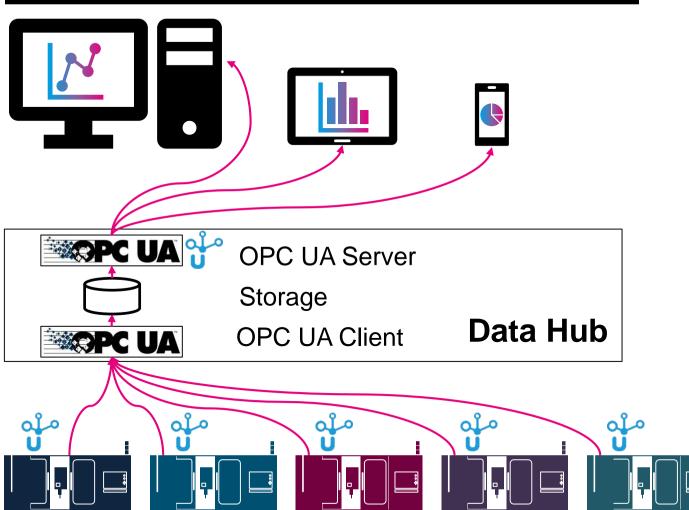

A look into the draft information model

5 main branches

Subbranches define datastructures

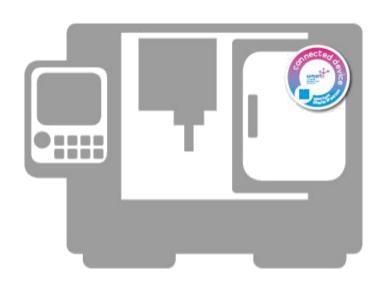


umati@EMO2019 showcase: behind the scenes


umati

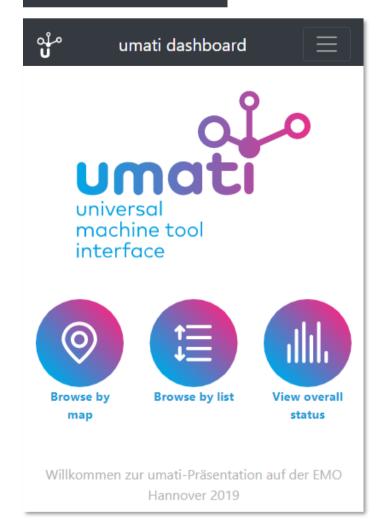
Showcase participants

EMO showcase connectivity scheme

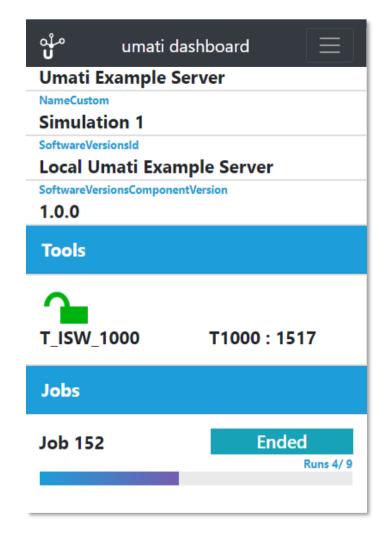


- All connected machines support the OPC UA Specification "umati for EMO"
- The Data Hub gathers and stores the machine data and makes it available via an OPC UA Server using the OPC UA specification "umati for EMO"
- All software using the showcase data connects to the Data Hub with an OPC UA Client

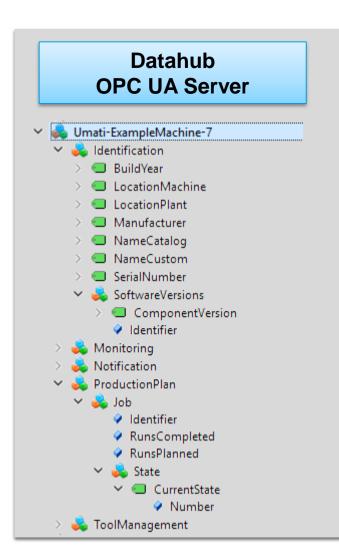
QR Codes to reach dashboard for each machine

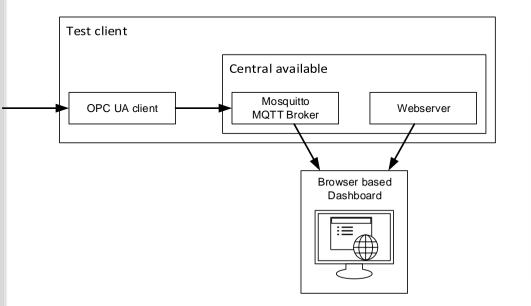


Every connected machine features a sticker.


Scan the QR code or type the shortcut link to access the live data streaming from the machine. Get an overview of all the connected machines at https://umati.app

Dashboard





#	Server	Node Id	Display Name	Value	Datatype	Source Timestamp	Server Timestamp	Statuscode
1	UMATI OPC-U	NS20 Numeric	Uniqueld	T_ISW_1000	String	07:59:34.366	10:48:21.556	Good
2	UMATI OPC-U	NS20 Numeric	Locked	true	Boolean	10:49:01.926	10:49:02.808	Good
3	UMATI OPC-U	NS20 Numeric	RunsCompleted	3	UInt32	10:48:59.920	10:49:00.807	Good
4	UMATI OPC-U	NS20 Numeric	RunsPlanned	9	UInt32	07:59:34.366	10:48:35.820	Good
5	UMATI OPC-U	NS20 Numeric		Job 168	String	10:48:41.905	10:48:42.592	Good
6	UMATI OPC-U	NS20 Numeric		"en", "Running"	LocalizedText	10:49:01.926	10:49:02.808	Good

Live Demo

Prospects for umati

Brief Outlook

- O Profiles/Extensions
- Interoperability of/with basic machine specification (current working groups in OPC Foundation and VDMA)
- Connectivity with automation systems
- Extensive definition of transformation engine
- Tests/Certifications/Branding

Further Information

Caren Dripke
umati Project Lead
Group Leader "Industrial Control Engineering"

Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW)
University of Stuttgart

Caren.Dripke@isw.uni-stuttgart.de

+49 (0)711-685-84500

www.umati.info info@umati.info

